О – окуни;
Щ – щуки;
К – карпы;
«Окуней в 3 раза больше, чем остальной рыбы»;
О = 3·(Щ + К)
«Щук в 9 раз меньше, чем остальной рыбы»
9·Щ = О + К
Подставим О из первого уравнения во второе:
9·Щ = 3·(Щ + К) + К
9·Щ = 3·Щ + 3·К + К
9·Щ –3·Щ = 4·К
6·Щ = 4·К
3·Щ = 2·К
K = 3/2·Щ = 1,5·Щ
По условию подберём вес рыбы, нам не важно сколько там было, главное процентное соотношение.
Пусть Щ = 10 кг, тогда:
K = 1,5·10 = 15 кг
и
О = 3·(Щ + К) = 3·(10 + 15) = 3·25 = 75 кг
Найдём сколько процентов составляют карпы:
ответ: 15.
mв = 5 кг
t₁ = 15°C
t₂ = 100°C
Q ---? кДж
Решение.
Q = c*m*(t₂ -t₁), где m - масса,кг; t₂ и t₁ - конечная и начальная температуры,°С; с - удельная теплоемкость вещества, Дж/(кг*°С)
При нагревании воды тепло тратится также и на нагревание железного котла.
Q = Qж + Qв
Поскольку в задании не приведены удельные теплоемкости, берем
сж = 460Дж/(кг*°С) ; св = 4200Дж/(кг*°С),
t₂ -t₁ = 100 - 15 = 85 (°C) ( расчет ведем в градусах Цельсия).
Q = 460 * 1,5 * 85 + 4200 * 5 * 85 = (690 + 21000) *85 = 21690 * 85 = 1843650 (Дж) = 1843,65 (кДж)
ответ; 1843,65 кДж