172.
1) 5^(x+y)=125, (1)
3^((x-y)²-1)=1; (2)
5^(x+y)=5³, (1)
3^((x-y)²-1)=3^0; (2)
x+y=3, (1)
(x-y-1)(x-y+1)=0; (2)
y=3-x, (1)
(x-3+x-1)(x-3+x+1)=0; (2)
(2x-4)(2x-2)=0;
2x-4=0;
2x=4;
x1=2
или
2x-2=0;
2x=2;
x2=1.
y1=3-2=1;
y2=3-1=2.
ответ: (2;1), (1;2).
2) 3^x+3^y=12, (1)
6^(x+y)=216; (2)
6^(x+y)=6³;
x+y=3;
y=3-x;
3^x+3^(3-x)=12; (1)
3^(2x)-12*3^x+27=0;
3^x=t;
t²-12t+27=0;
D=144-108=36;
t1=(12-6)/2=3;
t2=(12+6)/2=9;
3^x=3;
x1=1;
3^x=9;
x2=2;
y1=3-1=2;
y2=3-2=1.
ответ: (1;2), (2;1).
3) 4^(x+y)=128, (1)
5^(3x-2y-3)=1; (2)
2^(2(x+y))=2^7, (1)
5^(3x-2y-3)=5^0; (2)
2x+2y=7, (1)
3x-2y-3=0; (2)
2y=7-2x, (1)
3x-7+2x-3=0; (2)
6x=10;
x=10/6=5/3;
y=(7-2x)/2=(7-10/3)/2=11/6.
ответ: (5/3;11/6).
4) 3^(2x-y)=1/81, (1)
3^(x-y+2)=27; (2)
3^(2x-y)=3^(-4), (1)
3^(x-y+2)=3³; (2)
2x-y=-3, (1)
x-y+2=3; (2)
x-y=1;
y=x-1;
2x-x+1=-3; (1)
x=-4;
y=-4-1=-5.
ответ: (-4;-5).
173.
1) 4^(x+y)=16, (1)
4^(x+2y-1)=1; (2)
4^(x+y)=4², (1)
4^(x+2y-1)=4^0; (2)
x+y=2, (1)
x+2y-1=0; (2)
y=2-x; (1)
x+2(2-x)-1=0; (2)
x+4-2x-1=0;
-x=-3;
x=3;
y=2-3=-1.
ответ: (3;-1).
2) 6^(2x-y)=√6, (1)
2^(y-2x)=1/√2; (2)
6^(2x-y)=6^(1/2); (1)
2^(y-2x)=2^(-1/2); (2)
2x-y=1/2, (1)
+
y-2x=-1/2; (2)
0=0
ответ: нет решений.
3) 5^(2x+y)=125, (1)
7^(3x-2y)=7; (2)
5^(2x+y)=5³, (1)
7^(3x-2y)=7^1; (2)
2x+y=3, (1)
3x-2y=1; (2)
y=3-2x; (1)
3x-2(3-2x)=1;
3x-6+4x=1;
7x=7;
x=1;
y=3-2*1=1.
ответ: (1;1).
4) 3^(4x-3y)=27√3, (1)
2^(4y+x)=1/(2√2); (2)
3^(4x-3y)=3^(7/2), (1)
2^(4y+x)= 2^(-3/2); (2)
4x-3y=7/2, (1)
4y+x=-3/2; (2)
x=-3/2-4y,
4(-3/2-4y)-3y=7/2; (1)
-6-16y-3y=7/2;
-19y=19/2;
y=-1/2;
x=-3/2-4(-1/2)=-3/2+2=1/2.
ответ: (1/2;-1/2).
1. Функция задана формулой y = 5х + 4. Определите:
а) значение y, если х = 0,4 > y = 5*0,4 + 4 = 6
б) значение х, при котором у = 3 > 3 = 5x + 4 > x = -1\5
в) проходит ли график функции через очку с координатами (- 6; -12)
-12 = 5*(-6) + 4 > -12 = (не=) -26 > не проходит
2. Постройте график функции у = 2х + 4. По графику укажите, чему равно значение у, пр и х = - 1,5.
x = 0 > y = 2*0 + 4 > y = 4 > точка A (0; 4)
y = 0 > 0 = 2*x + 4 > x = -2 > точка В (-2; 0)
Через точки А и В и проходит график y = 2x + 4
x = -1,5 > y = 2*(-1,5) + 4 = -3 + 4 = 1
3. В одной системе координат постройте графики функций у = - 0,5х и у = 5. 4. Аналитически найдите координаты точки пересечения графиков функций: у = - 14х + 32 и у = 26х – 8.
y = -0,5x
x = 0 > y = -0,5*0 = 0 > точка A (0;0)
x = 8 > y = -0,5*8 = 4 > точка B (8; 4)
y = 5,4
график || оси OX
у = - 14х + 32 и у = 26х – 8
Решить систему уравнений:
{ y = -14x + 32
{ y = 26x - 8
-14x + 32 = 26x - 8 > 40x = 40 > x = 1 > y = 26x - 8 = 26*1 - 8 = 18 =>
точка пересечения графиков имеет координаты x = 1 и у = 18
5875
8575
Объяснение:
Запишем число в виде:
abcd
Признак делимости на 25:
Число делятся на 25, если оно заканчивается двумя нулями или цифрами, выражающими число, которое делится на 25.
Итак, наше число может выглядеть так:
1) ab00
2) ab25
3) ab50
4) ab75
Проанализируем эти числа.
1) Это число не подходит, поскольку сумма цифр
S₁ = a + b + 0 + 0 = a + b = 25
Но максимальное значение a=9; b=9; a+b = 9+9 = 18≠25
2) И это число не подходит, поскольку сумма цифр
S₁ = a + b + 2 + 5 = a + b + 7
Или
a+b = 25-7 = 18
Единственный вариант:
a=9; b=9. Проверим произведение:
9·9·2·5 = 810. Но 810 не делится нацело на 25
3)
Не годится и вариант ab50
поскольку a+b+5+0 = 25
a+b=20, чего быть не может.
Итак, у нас остался четвертый вариант:
ab75, то есть искомое число заканчивается на 75.
Находим сумму цифр:
a+b+7+5 = a+b+12
a+b = 25-12 = 13
Здесь всего 6 вариантов, которые мы и проверим:
9+4 = 13; 4+9 = 13; 9·4·7·5 = 1260 не делится на 25.
8+5 = 13; 5+8 = 13; 5·8·7·5 = 1400 делится на 25
7+6 = 13; 6+7 = 13; 7·6·7·5 = 1260 не делится на 25.
Итак, мы нашли два четырехзначных восхитительных числа:
5875 и
8575