М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
agharkova2014
agharkova2014
04.09.2021 01:45 •  Алгебра

Ввыражении 9*11+12: 3-2 расставь скобки так, чтобы его значение было наибольшим

👇
Ответ:
anyanice7
anyanice7
04.09.2021

(9×11)+(12÷3)-2=101

Объяснение:

...

(может быть так)

4,8(54 оценок)
Ответ:
katherinepierce1864
katherinepierce1864
04.09.2021

(9*(11+12)):(3-2)=(9*23):1=207

4,8(60 оценок)
Открыть все ответы
Ответ:
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.

Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе

1) есть только одна команда, которая не играла (0)
2) есть только одна команда, которая сыграла ровно одну игру (1)
3) есть только одна команда, которая сыграла ровно две игры (2)
.
.
.
20) есть только одна команда, которая сыграла ровно 19 игр (19)

Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.

Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
4,4(48 оценок)
Ответ:
огурок
огурок
04.09.2021
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.

Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе

1) есть только одна команда, которая не играла (0)
2) есть только одна команда, которая сыграла ровно одну игру (1)
3) есть только одна команда, которая сыграла ровно две игры (2)
.
.
.
20) есть только одна команда, которая сыграла ровно 19 игр (19)

Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.

Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
4,8(1 оценок)
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ