Область определнения данного выражения D(f)=[0,08; 2]
Объяснение:
Подкоренное выражение должно быть больше или равно 0.
\begin{gathered}1-\frac{2x-1}{3}\geq 0\\ \\ \frac{3-2x+1}{3}\geq 0\\ \\ 4-2x\geq 0\\ \\ 2x\leq4 \\ \\ x\leq2\end{gathered}
1−
3
2x−1
≥0
3
3−2x+1
≥0
4−2x≥0
2x≤4
x≤2
\begin{gathered}2x-\frac{x}{3}-\frac{2}{15} \geq 0\\ \\ \frac{6x-x}{3} \geq \frac{2}{15} \\ \\ \frac{5x*5}{15}\geq \frac{2}{15} \\ \\ 25x\geq 2\\ \\ x\geq \frac{2}{25}\\ \\ x\geq 0,08\end{gathered}
2x−
3
x
−
15
2
≥0
3
6x−x
≥
15
2
15
5x∗5
≥
15
2
25x≥2
x≥
25
2
x≥0,08
x∈[0,08; 2]
D(f)=[0,08; 2]
Объяснение:
Систем нету, поэтому решу только две задачи.
1. Купюры на 500 руб, всего 22 штуки.
{ 50x + 10y = 500
{ x + y = 22
Делим 1 уравнение на 10
{ 5x + y = 50
{ x + y = 22
Вычитаем из 1 уравнения 2 уравнение
5x + y - x - y = 50 - 22
4x = 28
x = 7 купюр по 50 рублей.
y = 22 - x = 22 - 7 = 15 купюр по 10 рублей.
2. Прямая y = kx + b; A(5; 0); B(-2; 21)
Подставляем координаты вместо х и у.
{ 0 = k*5 + b
{ 21 = k*(-2) + b
Из 1 уравнения вычитаем 2 уравнение
0 - 21 = 5k + b - (-2)k - b
-21 = 7k
k = -21/7 = -3
b = -5k = -5*(-3) = 15
Прямая y = -3x + 15