Задание № 2:
При каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0<а<4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а>4 - 2 корня (от исходной параболы)
ответ: 4
Найдите наибольшее целое число,которое является решением системы неравенств:
{3 - 5(2x + 1) > 7x - 2(x + 1)
{6(1 + x) + 2 > 3(1 - x) + 7x
{3 - 10x - 5 > 7x - 2x -2
{6 +6x + 2 > 3 -3 x + 7x
{ - 10x -5x > 2 -2
{ 6x -4x > 3 -8
{ - 15x > 0
{ 2x > -5
{ x < 0
{ x > -2,5
х принадлежит (-2,5;0)
Все целые числа решения системы неравенств -2;-1;0
Максимальное целое число - 0
х належить (-2,5;0)
Всі цілі числа рішення системи нерівностей -2;-1;0
Максимальне ціле число - 0
5. ответ: х- любое число