(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
1) a+b+c=0 => a+b=-c => (a+b)³=(-c)³ => a³+3a²b+3ab²+b³=-c³ => => a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) => => a³+b³+c³=3abc 2) Обратное утверждение: Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов). Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0. Таким образом, пункт 1 является верным. Пункт 2 не является верным. Найдем другие два варианта для c. Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки: c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²). Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c: D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0 c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица. Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a. Если D<0, то c1=(a+b)/2+i√3(a-b)/2, c2=(a+b)/2-i√3(a-b)/2. А возможные варианты для суммы станут такими: a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2, или a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
19 и 9