Объяснение:
((a+7)\(a-7)-(a-7)\(a+7))\(14\(a^2-7a))
Приведем дроби в скобке к общему знаменателю a^2-49, домножив первую дробь на (a+7), а вторую на (a-7):
((a+7)^2-(a-7)^2)\(a^2-49)
По формуле разности квадратов:
((a+7-a+7)(a+7+a-7))\(a^2-49)
14*2a\a^2-49
28a\a^2-49
Представим деление одной дроби на другую умножением первой на перевернутую вторую:
(28a*(a^2-7a))\(14*(a^-49))
Вынесем в числителе "а" за скобку, а в знаменателе разложим скобку на множители:
(28a^2*(a-7))\(14(a-7)(a+7))
Сократим дробь:
2a^2\(x+7)
Необходимые условия экстремума:
Имеем две критические (стационарные) точки: и
Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.
Если точка с абсциссой меняет знак с "+" на "–" (двигаясь в направлении увеличения
), то
— точка максимума, а если с "–" на "+" , то
— точка минимума.
Из промежутка выберем, например,
и имеем:
Из промежутка выберем, например,
и имеем:
Имеем максимум в точке с абсциссой
Из промежутка выберем, например,
и имеем:
Имеем минимум в точке с абсциссой
ответ:
,,,,,,,,,,,,,,,,,,,,,,,,