Ттебе как надо решать на падобии: пример 2. решить неравенстворешение. точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.1) при выполняется , и неравенство имеет вид , то есть . в этом случае ответ .2) при выполняется , неравенство имеет вид , то есть . это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .3) при выполняется , неравенство преобразуется к , и решение в этом случае . общее решение неравенства объединение трех полученных ответов.ответ. .
1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
27
Объяснение:
любое число >0 в 0 степени равно 1=>:
1×1/3^-6×3^3
1/3^-3
т.к у нас отрицательный показатель, переносим его в числитель:
3^3=27