М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
semchankov
semchankov
05.10.2021 20:16 •  Алгебра

запишите область определения функции в виде числового множества:
1. f(x)=0,5x+4; 0 ≤x≤3;
2. f(x)=0,3x-2, -2≤x≤1;
3. f(x)=4-x,-2≤x;
4. f(x)=(x+1)/4, x≤3​

👇
Открыть все ответы
Ответ:
kotyaraasm
kotyaraasm
05.10.2021
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ...
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116

2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.
4,6(69 оценок)
Ответ:
ya042302SashaA
ya042302SashaA
05.10.2021
1. Метод математической индукции.
Проверим для n=1
n^3+3n^2+5n+3=12 делится на 3, утверждение верно для n=1
n^3+3n^3+5n+3=12 делится на 3, утверждение верно для n=1
Пусть утверждение верно для всех n≤k, докажем его для n=k+1
(k+1)^3+3(k+1)^2+5(k+1)+3=
=k^3+3k^2+3k+1+3*(k^2+2k+1)+5k+5+3=
=k^3+3k^2+5k+3+3k^2+9k+9=
=(k^3+3k^2+5k+3)+3(k^2+3k+3)
(k^3+3k^2+5k+3) делится на 3 по предположению индукции, 3(k^2+3k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
Для тройки:
(k+1)^3+3(k+1)^3+5(k+1)+3=
=4(k^3+3k^3+3k+1)+5k+5+3=(4k^3+5k+3)+3*(4k^2+4k+3)
(4k^3+5k+3) делится на 3 по предположению индукции, 3*(4k^2+4k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
4,4(16 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ