Функция cos(x), а вместе с ней и функция y=3^[cos(x)], определена на всей числовой оси. Мы докажем непрерывность функции в точке x0, где x0 - любая точка числовой оси, если докажем стремление к нулю выражения y(x0+Δx)-y(x0) при Δx⇒0. Но y(x0+Δx)-y(x0)=3^cos(x0+Δx)-3^cos(x0)=3^[cos(x0)*cos(Δx)-sin(x0)*sin(Δx)]-3^cos(x0). При Δx⇒0 cos(Δx)⇒1, а sin(Δx)⇒0, поэтому выражение cos(x0)*cos(Δx)-sin(x0)*sin(Δx) стремится к cos(x0), а выражение 3^[cos(x0)*cos(Δx)-sin(x0)*sin(Δx)]-3^cos(x0) - к нулю. Таким образом доказана непрерывность данной функции на всей числовой оси.
Вариант решения: Обозначим время первой половины пути t. Скорость поезда была 420:t Так как вторую половину пути поезд был задержан на 0,5 ч, ему пришлось увеличить скорость на 2 км, чтобы наверстать время, затраченное на ремонт Скорость стала больше на 2 часа, т.е. 420:(t-0,5) Составим уравнение. 420:(t-0,5)- 420:t =2 Домножим обе части уравнения на t(t-0,5), чтобы избавиться от дробей. 420t-420t+210=2t²-t 2t²-t-210=0 D=b²-4ac=-1²-4·2·(-210)=1681 t1={-(-1)+√1681}:4=10,5 Второй корень отрицательный и не подходит. Время первой половины пути равно 10,5 часов. Время движения 10,5+10=20,5 часов. На весь путь затрачено 10,5+10+0,5=21 час.
Пусть скорость 1-й стрекозы будет х, тогда время потраченое на весь путь будет S//х. Половина пути это S/2. Время за которое 2-я стрекоза пролетит первую половину пути это S//2(х-16), а вторую половину за S//2×120 (знак // обозначает что всё выражение после него - в знаменателе дроби). Так как стрекозы прилетели одновременно, то S//х=S//2(х-16)+S//2×120. После сокращения на S получаем 1//х=1//2(х-16)+1//2×120 ⇒ 1//х-1//2(х-16)=1//240 ⇒ 240(2х - 32 - х)=2х(х - 16) ⇒ 240х - 7680=2х² - 32х ⇒ 2х² - 272х+7680=0 ⇒ х²-136х+3840=0 ⇒ D=3136 ⇒ х(1)=40 , х(2)=96 и согласно условию х(1)=40 - не подходит , остаётся вариант что скорость первой стрекозы 96 км/ч.
ответ: функция непрерывна на всей числовой оси.
Объяснение:
Функция cos(x), а вместе с ней и функция y=3^[cos(x)], определена на всей числовой оси. Мы докажем непрерывность функции в точке x0, где x0 - любая точка числовой оси, если докажем стремление к нулю выражения y(x0+Δx)-y(x0) при Δx⇒0. Но y(x0+Δx)-y(x0)=3^cos(x0+Δx)-3^cos(x0)=3^[cos(x0)*cos(Δx)-sin(x0)*sin(Δx)]-3^cos(x0). При Δx⇒0 cos(Δx)⇒1, а sin(Δx)⇒0, поэтому выражение cos(x0)*cos(Δx)-sin(x0)*sin(Δx) стремится к cos(x0), а выражение 3^[cos(x0)*cos(Δx)-sin(x0)*sin(Δx)]-3^cos(x0) - к нулю. Таким образом доказана непрерывность данной функции на всей числовой оси.