Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
данную задачу решим с арифметической прогрессии:
a₁ = 20 мин - продолжительность в первый день
d = 10 мин - ежедневное увеличение
aₙ = 2 часа = 120 мин - n - день в который продолжительность 2 часа
n - ?
Sₙ - ?, мин общее время на воздухе
Найдем на какой по счёту день длительность прогулки достигнет 2 ч:
aₙ = a₁ + (n - 1)*d
120 = 20 + (n - 1)*10
120 = 20 + 10n - 10
120 = 10 + 10n
10n = 110
n = 110:10
n = 11 - день на который продолжительность прогулки достигнет 2 ч.
Найдем сколько всего времени за эти дни ребёнок проведёт на воздухе S₁₁:
a₁₁ = 120 мин
Sₙ = (a₁ + aₙ)/2*n
S₁₁ = (a₁ + a₁₁)/2*n
S₁₁ = (20 + 120)/2*11
S₁₁ = 140/2*11
S₁₁ = 70*11
S₁₁ = 770 мин проведёт ребёнок на улице;
770 мин = 12 часов 50 мин;
ответ: на 11 день длительность прогулки достигнет 2 ч, 12 часов 50 мин ребёнок проведёт на воздухе.