По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
1) Складывая уравнения системы, получаем уравнение 2x²=32, откуда x²=16. Тогда из первого уравнения находим 2y²=2 и y²=1. Если x²=16, то x1=4, x2=-4 Если y²=1, то y1=1, y2=-1. Решением уравнения явлаются пары (x1;y1), (x1;y2), (x2,y1), (x2;y2). ответ: (4;1), (4;-1), (-4;1), (-4;-1)
2) Из первого уравнения находим 6/(x-y)=8/(x+y)-2. Тогда 9/(x-y)=12/(x+y)-3. Подставляя это выражение во второе уравнение, получаем 22/(x+y)=11, откуда x+y=22/11=2. Теперь из первого уравнения находим 6/(x-y)-8/2=-2, откуда 6/(x-y)=2 и x-y=6/2=3. Получили систему уравнений:
x+y=2 x-y=3.
Из первого уравнения находим y=2-x. Подставляя это выражение во второе уравнение, получаем 2x-2=3, 2x=5, x=2,5. Тогда y=-0,5. ответ: (2,5;-0,5)
p=m/n
n=90 ( количество двузначных чисел)
Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=12
d=15-12=3
99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=10
d=15-10=5
95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90
m=30+20-6=44
p=44/90=22/45