1) стороны прямоугольника a₁ = 1 см b₁ = 13 см
2) стороны прямоугольника a₂ = 6 см b₂ = 8 см
Объяснение:
а - меньшая сторона прямоугольника
b - большая сторона прямоугольника
2a + 2b = 28 - периметр прямоугольника
а + b = 14
b = 14 - a (1)
ab - площадь прямоугольника
а² - площадь квадрата
ab - a² = 12 (2)
Подставим (1) в (2)
а · (14 - а) - а² = 12
14а - а² - а² = 12
2а² - 14а + 12 = 0
а² - 7а + 6 = 0
D = 7² - 4 · 6 = 25
√D = 5
a₁ = 0.5(7 - 5) = 1 (см) b₁ = 14 - 1 = 13 (см)
a₂ = 0.5(7 + 5) = 6 (см) b₂ = 14 - 6 = 8 (см)
1) стороны прямоугольника a₁ = 1 см b₁ = 13 см
2) стороны прямоугольника a₂ = 6 см b₂ = 8 см
Объяснение:
а - меньшая сторона прямоугольника
b - большая сторона прямоугольника
2a + 2b = 28 - периметр прямоугольника
а + b = 14
b = 14 - a (1)
ab - площадь прямоугольника
а² - площадь квадрата
ab - a² = 12 (2)
Подставим (1) в (2)
а · (14 - а) - а² = 12
14а - а² - а² = 12
2а² - 14а + 12 = 0
а² - 7а + 6 = 0
D = 7² - 4 · 6 = 25
√D = 5
a₁ = 0.5(7 - 5) = 1 (см) b₁ = 14 - 1 = 13 (см)
a₂ = 0.5(7 + 5) = 6 (см) b₂ = 14 - 6 = 8 (см)
Пусть N - объем всего задания (например, количество ям, которые нужно вырыть), х - производительность 1-го трактора (ям / час), y - производительность 2-го трактора (ям / час).
Тогда, по условию задачи имеем систему из 3-х уравнений:
N/(x + y) = 2 (два трактора работали вместе и справились с заданием за 2 часа). Отсюда имеем: (x + y)/N = 1/2, или (x/N) + (y/N) = 1/2
N/y = T (столько времени займет выполнение всего задания у 2-го трактора) , N/x = Т + 3 = N/y + 3 (столько времени займет выполнение всего задания у 1-го трактора (т.е., на 3 часа больше, чем у второго)).
Нужно найти величину N/x.
Обозначим z = N/x и p = N/y. Тогда
1) (1/z) + (1/p) = 1/2 z = p + 3 (или 2) p = z -3)
Подставляем 2) в 1) и решаем полученное квадратное уравнение z^2 - 7z + 6 = 0
Получаем z = 6 либо z = 1. Последний вариант не подходит, т.к. в этом случае получается, что 1-й трактор выполнит задание быстрее, чем оба трактора, работая вместе (за 1 час, и 2 часа, соответственно).
Остается z = 6
Проверим ответ: если z = 6, то 1-й трактор выполнит все задание за 6 часов, а 2-й - за 3 часа. Следовательно, за 2 часа 1-й трактор выполнит треть задания, а второй - две трети. Следовательно, оба трактора, работая вместе, действительно справятся с заданием за 2 часа. Похоже, что все получилось верно.
ответ: 1-й трактор, работая самостоятельно, выполнит все задание за 6 часов.