М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zulu51
zulu51
20.04.2020 19:42 •  Алгебра

Найдите область определения функций.все на картинке.

👇
Ответ:
pаvеl2
pаvеl2
20.04.2020

1) Очевидно ,что любое действительное число

2)Знаменательно не равен нулю ,то есть x≠15/2

3)Подкоренное выражение больше либо равно нуля

6x+24≥0⇒x≥-4

4)Так как корень находится в знаменатели ,то подкоренное выражение не должно быть равно нулю ,то есть будет строгое неравенство 4+8x>0⇒x>-1/2

5)Знаменатели обеих дробей не равны нулю ,то есть x≠0 и x≠±4

6)Знаменатель не равен нулю ,то есть x²+1≠0⇔x²≠-1⇒любое действительное число

4,8(85 оценок)
Открыть все ответы
Ответ:
tri0
tri0
20.04.2020
Решим сперва ваш пример:
log_25 и log_23
т.к. у логарифмов основание одинаковое, то мы имеем право опустить логарифм и сравнивать уже по его числу
5 и 3
следовательно... log_25log_23
теперь рассмотрим более сложный пример
log_{\frac{1}{5}}\frac{10\sqrt{5}}{\sqrt{3}} и -(log_{25}4+log_{25}120-log_{25}3)
-log_5\frac{10\sqrt{5}}{\sqrt{3}} и -\frac{1}{2}(log_{5}4+log_{5}120-log_{5}3)
умножим обе части на -2 и надо бы не забыть поменять в этом месте знак неравенства.
2log_{5}\frac{10\sqrt{5}}{\sqrt{3}} и log_{5}(4*120)-log_{5}3)
log_{5}\frac{100*5}{3} и log_{5}(480)-log_{5}3)
log_{5}(100*5)-log_5(3) и log_{5}(480)-log_{5}3)
прибавим к обеим частям log_53
log_{5}(100*5) и log_{5}(480)
т.к. у логарифмов одинаковое основание, то их можно опустить
500 и 480
отсюда видно, что 500 > 400, следовательно...
log_{\frac{1}{5}}\frac{10\sqrt{5}}{\sqrt{3}} < -(log_{25}4+log_{25}120-log_{25}3)
PS меньше, потому что мы, в ходе решения, поменяли знак (когда умножили на -2)
4,5(2 оценок)
Ответ:
1) -2 5 -7 1 0 0
2) С непосредственной подстановкой я думаю все ясно. А выполнить проверку с схемы Горнера можно найдя остаток от деления исходного многочлена на (x-x0) (ведь по теореме Безу и будет значением многочлена в точке x0). Схему Горнера тут неудобно оформлять, поэтому давай сам как нибудь.
3) В соответствии с теоремой о рациональных корнях многочлена с целыми коффициентами, целые корни должны быть делителями свободного члена 3.
Делители тройки: 1, -1, 3, -3. Убеждаемся что только числа 1 и 3 являются корнями. ответ: x=1, x=3
4) Сначала поищем целые корни. Проверим числа 1, -1, 3, -3, 9, -9. 1 - корень, поэтому делим  исходный многочлен на (x-1) и получаем
5x^2+14x+9. Теперь решаем квадратное уравнение находим еще два корня x=-9/5 и x=-1
Таким образом 5x^3+9x^2-5x-9=(x-1)(x+1)(5x+9)
4,5(59 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ