Это задача с двумя неизвестными и её надо решать как систему уравнений. Итак: 1. Х - количество деталей изготавливаемых Первым рабочим в 1 день 2. У Вторым рабочим за один день. 3. 8Х (дет) изготовил первый рабочий за 8 дней 4. 15Y (дет) второй рабочий за 15 дней Составим первое уравнение 8Х + 15У = 162 (детали) Надеюсь понятно?! Далее: По условию задачи сказано, что за 5 дней, то есть 5Х первый рабочий сделал на 3 детали больше. Получаем второе уравнение: 5Х - 7У = 3 Объединяем это в систему уравнений! 8Х + 15У = 162 5Х - 7У = 3 Выразим из второго уравнения Х получим 5Х = 3 + 7У, откуда Х = (3 +7У)/5 Теперь это значение Х подставим в первое уравнение системы. 8 (3 +7У)/5 + 15У = 162. Приведём к общему знаменателю и получим 56У + 24 +75У = 810 131У = 810 - 24 131У = 786 У = 6 (дет) И тогда Х = (7У +3)/5 = (42 +3)/5 = 45:5+ 9 (дет)
Проверка: 8Х = 8х9 = 72 (деталей) -1рабочий 15У= 15х6 = 90 (дет) 2 рабочий за 15 дней ОТВЕТ: 1 рабочий делал в один день 9 деталей и 72 за 8 дней 2 рабочий изготовлял за один день 6 деталей и всего сделал 90!
Х - изготовил деталей за 1 день первый рабочий у - изготовил деталей за 1 день второй рабочий , по условию задачи имеем : 5х - 7у = 3 8х + 15у = 162 , решим уравнения системой уравнений . Первое уравнение умножим на 8 , а второе на 5 и от первого отнимем второе . Получим : 40х - 56у = 24 40х + 75у = 810 -56у - 75у = 24 - 810 - 131у = - 786 у = 6 деталей изготовил второй рабочий за день Подставим полученное значение в первое уравнение : 5х - 7*6 = 3 5х = 3 + 42 5х = 45 х = 45/5 х = 9 деталей изготовил первый рабочий за 1 день
Обычное квадратное уравнение, D=16, корни х1=1, х2=-1/3,
написана проверка при х1=1