По условию имеем:
a₁+a₅=26
a₂*a₄=160
Распишем 2й, 4й и 5й члены прогрессии через a₁:
a₂=a₁+d
a₄=a₁+3d
a₅=a₁+4d
Выполним подстановку в первое равенство:
a₁+(a₁+4d)=26
2a₁+4d=26
упростим, т.е. разделим обе части равенства на 2:
a₁+2d=13
Далее, выполним подстановку во второе равенство:
(a₁+d)*(a₁+3d)=160
Для сокращения расчетов во второй скобке распишем выражение:
(a₁+d)*((a₁+2d)+d)=160
Из первого равенства было получено, что a₁+2d=13. Подставим это значение во вторую скобку, получим:
(a₁+d)*(13+d)=160
Выразим a₁ из первого равенства:
a₁=13-2d и подставим в последнее равенство:
(13-2d+d)*(13+d)=160
(13-d)(13+d)=160
Произведение в левой части равенства свернем по формуле разности квадратов:
13²-d²=160
169-d²=160
d²=9
d=3
a₁=13-2d
a₁=13-2*3
a₁=13-6
a₁=7
Далее по формуле суммы первых n членов прогрессии находим:
Sn=(2*a₁+(n-1)*d)/2*n
S₆=(2*7+5*3)/2*6
S₆=(14+15)/2*6
S₆=29/2*6
S₆=29*3
S₆=87
Вектор 5р : рисуем того же направления, что и вектор р, только в 5 раз длиннее.
Вектор q рисуем с параллельного переноса, совместив его начало с началом вектора 5р . Угол в 60 градусов сохраняется.
По правилу параллелограмма - диагональ параллелограмма, построенного на векторах 5р и q , является суммой этих векторов. Диагональ выходит из точки, являющейся общим началом векторов 5р и q .
Далее строим вектор 3q , длина которого в 3 раза больше длины вектора q , а направление совпадает с направлением вектора q .
Вектор ( р-3q ) - это сторона треугольника, соединяющая конец вектора 3q и начало вектора р . Причём векторы р и 3q имеют общее начало . Направление вектора (р-3q) идёт от вектора 3q к вектору р . На рисунке этот параллелограмм заштрихован зелёной штриховкой .
Чтобы построить параллелограмм, площадь которого равна векторному произведению векторов (5p+q) и (р-3q) , надо опять выбрать точку, которая будет началом как вектора (5р+q) , так и вектора (р-3q) . Затем достроить параллелограмм .