Цель задачи найти наименьшее число, которое делится на 35.
Разложим число 35 = 5 * 7,
значит число 49*** должно одновременно делится и на 5 и на 7.
Рассуждаем.
1) Признак делимости числа 49*** на 5 это такое число, у которого последняя цифра делится на 5. Из чётных чисел наименьшее это - 0.
Предварительно число имеет вид 49**0.
2) Рассмотрим теперь признак делимости на 7.
По определению число делится на 7 если результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.
Т.к. последняя цифра 0, то достаточно рассмотреть только число 49**.
Запишем иначе: 49ХУ, тогда из определения
(49Х - 2*У) = - этот полученный результат доложен делится на 7.
Из выражения видно, что наименьшее чётная цифра, которая будет обеспечивать признак делимости на 7 это - 0 , т.е. число 4900
тогда
490 - 2 * 0 = 490 - это число делится на 7.
Получаем наименьшее число 49000 - которое делится на 35, но по условию задачи цифры должны быть различные.
Тогда ближайшие числа которые должны делится на 7 это:
4922; 4924; 4926 и 4928
Проверим делимость на 7
492 - 2*2 = 488 ⇒ 48 - 2 * 8 = 32 не делится на 7
492 - 2*4 = 484 ⇒ 48 - 2 * 4 = 40 не делится на 7
492 - 2*6 = 480 ⇒ 48 - 2 * 0 = 48 не делится на 7
492 - 2*8 = 476 ⇒ 47 - 2 * 6 = 35 делится на 7
Окончательно запишем 49280 наименьшее число с различными цифрами, которое делится на 35
ответ: 49280 - наименьшее число которое делится на 35.
a) 6x^2 + 24x = 6(x^2+4x) = 6(x^2+4x+4) - 6*4 = 6(x+2)^2 - 24
б) 18b^2 - 10b + 6 = 2(9b^2-5b) + 6 =
= 2((3b)^2-2*3b*5/6+(5/6)^2) - 2*(5/6)^2 + 6 =
= 2(3b-5/6)^2 + (6-50/36) = 2(3b-5/6)^2 + 4 11/18
в) 50w^2 + 20w + 7 = 2(25w^2 + 10w) + 7 =
= 2((5w)^2 + 2*5w*1 + 1^2) - 2*1^2 + 7 = 2(5w+1)^2 + 5
г) 54c^2 - 18c + 3 = 6(9c^2 - 3c) + 3 =
= 6((3c)^2 - 2*3c*1/2 + (1/2)^2) - 6*(1/2)^2 + 3 =
= 6(3c-1/2)^2 - 6/4 + 3 = 6(3c-1/2)^2 + 3/2
6)
a) (3n+2m)^3 = (3n)^3 + 3*9n^2*2m + 3*3n*4m^2 + (2m)^3 =
= 27n^3 + 54m^2*n + 36n*m^2 + 8m^3
б) (h + 2w)^3 = h^3 + 3h^2*2w + 3h*4w^2 + (2w)^3 =
= h^3 + 6h^2*w + 12h*w^2 + 8w^3
в) (5p + 5t)^3 = (5p)^3 + 3*25p^2*5t + 3*5p*25t^2 + (5t)^3 =
= 125p^3 + 375p^2*t + 375p*t^2 + 125t^3
г) (6c + 7i)^3 = (6c)^3 + 3*36c^2*7i + 3*6c*49i^2 + (7i)^3 =
= 216c^3 + 756c^2*i + 882c*i^2 + 343i*3