М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Yarik176
Yarik176
29.01.2023 21:51 •  Алгебра

Дана функция f(x)=x^3+6x^2+7x-2 напишите уравнение касательной к графику функции y=f(x) параллельной прямой y=-2x+7​

👇
Ответ:
bertashka
bertashka
29.01.2023

Производная данной функции f'(x)=3x^2+12x+7

Пусть x_0 - абсцисса точки касания прямой к кривой.

Известно, что неизвестная прямая(касательная) параллельна прямой y = -2x + 7, следовательно, у них угловые коэффициенты равны: k = -2.

По геометрическому смыслу производной, мы имеем:

f'(x_0)=k\\ \\ 3x_0^2+12x_0+7=-2\\ \\ 3x_0^2+12x_0+9=0~~|:3\\ \\ x_0^2+4x_0+3=0

По теореме Виета получаем x_0=-3 и x_0=-1

Т.е. имеет две касательные к данной кривой. Найдем их.

Общий вид уравнения касательной: y=f'(x_0)(x-x_0)+f(x_0)

Подсчитаем значение функции и значение производной функции в точке x_0=-3

f(-3)=(-3)^3+6\cdot(-3)^2+7\cdot (-3)-2=4\\f'(-3)=3\cdot (-3)^2+12\cdot (-3)+7=-2

Уравнение касательной: y=-2(x+3)+4=\boxed{-2x-2}

Аналогично, подсчитаем значение функции и значение производной функции в точке x_0=-1

f(-1)=(-1)^3+6\cdot(-1)^2+7\cdot(-1)-2=-4

f'(-1)=3\cdot (-1)^2+12\cdot(-1)+7=-2

Уравнение касательной: y=-2(x+1)-4=\boxed{-2x-6}

P.S. Можно было не считать значения производной функции, поскольку это и есть угловой коэффициент k = -2.


Дана функция f(x)=x^3+6x^2+7x-2 напишите уравнение касательной к графику функции y=f(x) параллельной
4,4(52 оценок)
Открыть все ответы
Ответ:
Diman4ik355
Diman4ik355
29.01.2023

Это арифметическая прогрессия.

a1 = 1; d = 1; любое a(n) = n.

Нужно найти такое n, что S(n) <= 235; S(n+1) > 235.

{ S(n) = (a1 + a(n))*n/2 = (1 + n)*n/2 <= 235

{ S(n+1) = (a1 + a(n+1))*(n+1)/2 = (1 + n + 1)(n + 1)/2 > 235

Получаем

{ (n + 1)*n <= 470

{ (n + 2)(n + 1) > 470

Раскрываем скобки

{ n^2 + n - 470 <= 0

{ n^2 + 3n - 468 > 0

Решаем квадратные неравенства

{ D = 1 + 4*470 = 1881 ≈ 43,4^2

{ D = 9 + 4*468 = 1881 ≈ 43,4^2

Как ни странно, дискриминанта получились одинаковые.

{ n = (-1 + 43,4)/2 <= 21

{ n = (-3 + 43,4)/2 > 20

ответ 21.

4,8(25 оценок)
Ответ:
ladytka4ewa201
ladytka4ewa201
29.01.2023
Последовательные натуральные числа образуют арифметическую прогрессию.
Ее сумма:
Sn = n(a1 + an)/2,
где а1 - первый член прогрессии, аn - последний член.
По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528.
Получается неравенство:
528 > n(1+n)/2
n(1+n) < 1056
n^2 + n - 1056 <0
Найдем корни:
Дискриминант:
Корень из (1+4•1056) =
= корень из (1+4224) =
= корень из 4225 = 65
n1 = (-1+65)/2 = 64/2 = 32
n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.

(n-32)(n+32) <0
n-32<0
n+32>0

n<32
n>-32 - не подходит, поскольку n >0

1 < n < 32
Это значит, что n= 31.

ответ: 31

Проверка:
Если бы n=32, то:
(1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
4,5(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ