Объяснение:
Пусть скорость пешехода - х км/час
а скорость велосипедиста - y км/час
Длина пути от города до деревни : 30 км
1) Велосипедист выехал на 45 мин позже пешехода и был в пути 30 мин.
30 мин = 30/60 = 0,5 часа
Расстояние , которое проехал велосипедист составило : 0,5y км
Пешеход был в пути :
45 мин +30 мин= 75 мин
75 мин = 75/60= 1,25 часа
Расстояние , которое пешеход составило : 1,25х км
Велосипедист был позади пешехода на 2,5 км , значит можем составить первое уравнение :
1,25x -0,5y= 2,5 (1)
2) Велосипедист ехал еще 30 мин , значит общее время составило :
30 мин +30 мин = 1 час , а расстояние , которое он преодолел было :
1*y км
Время движения пешехода было : 75 мин. +30 мин= 105 мин
105 мин = 105/60= 1,75 часа, расстояние он преодолел : 1,75x км
При этом велосипедист был на 0,5 км от деревни дальше , чем пешеход . Можем составить второе уравнение:
1,75х - y =0,5 ( 2)
Получаем систему уравнений :
Домножим первое уравнение на 2
отнимем от первого уравнения второе
0,75х= 4,5
х= 4,5 : 0,75
х= 6 км/час - скорость пешехода
подставим значение х в любое уравнение и найдем y
2,5*6-y= 5
15-y= 5
y= 15-5=10 км/час - скорость велосипедиста
Когда катер плывёт по течению, то течение плыть катеру, т.е. к собственной скорости катера добавляется скорость течения, т.е. в одном направлении у катера будет скорость 18+2=20 км/ч. А в другую сторону наоборот: течение мешает плыть катеру, т.е. скорость катера против течения будет: 18-2=16 км/ч. Получается первую половину пути-туда, катер проплыл за такое время: А/20, а вторую половину-обратно катер проплыл вот за какое время: А/16. Полное время пути катера 4,5 часа, т.е. можно составить уравнение относительно времени:
А/20 + A/16 = 4,5
Приведём к общему знаменателю:
A*16+20*A = 45
16*20 10
36A = 45
16*20 10
9А = 9
4*20 2
А = 1
80 2
2А=80
А=40 км - расстояние между пристанями.