y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
1. кор(3-х) - х - 3 = 0
кор(3-х) = х+3 х прин [-3; 3].
3-х =x^2+6x+9
x^2 + 7x + 6 = 0
x1 = -6 (не подходит)
х2 = -1
ответ: -1
2. x^2 + 3x + 1 = y
y^2 + 3y + 1 = x Вычтем из первого второе и разложим на множители:
(х-у)(х+у+4) = 0
Разбиваем на две подсистемы:
х=у и: у = -х-4
x^2 + 3x + 1 = x x^2 + 3x + 1 = -x-4
x = y = -1
(x+1)^2 = 0 x^2 + 4x + 5 = 0
D<0 нет решений.
ответ: (-1; -1).