Вместо звёздочки 2x²-4xy-2y²
Объяснение:
Чтоб найти точку пересечения приравняем оба уравнения получим: 5х-7=3х+1 2х=8 х=4 у=13
x^2*y+1-x^2-y=(x^2*y--1)=y*(x^2-1)-1*(x^2-1)=(x^2-1)*(y-1)
Объяснение:
A1.
a) (5a+10)/(b-7):(a²+4a+4)/2b-14=(5(a+2)/(b-7) * ((2(b-7))/(a²+4a+4)=
=(5(a+2)2(b-7))/((b-7)(a+2)²)=5*2/(a+2)=10/(a+2)
a²+4a+4=0; D=16-4*1*4=0
a₁=a₂=0,5(-4±√0)= -2
a²+4a+4=(a+2)(a+2)=(a+2)²;
б) (√50-√6)/√12=(√(25*2)-√(3*2))/(√3*2*2)=(5√2-√(3*2))/(√3*2*2)=
=(5-√3)/√6=(√6(5-√3)/6=(5√(3*2)-√(3*3*2))/6=(5√6-3√2)/6.
A2.
а) (√2)⁶/32=(2¹⁽²)⁶/2⁵=2³/2⁵=2³⁻⁵=2⁻²=1/2²=1/4;
б) (5,2*10⁻⁷)(3,5*10⁴)=5,2*3,5*10⁻⁷⁺⁴=18,2*10⁻³=1/(18,2*10³);
в) 3⁻⁶*9⁻²/(3⁻¹²)=3⁻⁶*(3²)⁻²/3⁻¹²=3⁻⁶*3⁻⁴/3⁻¹²=3⁻¹⁰/3⁻¹²=3⁻¹⁰⁻⁽⁻¹²⁾=3⁻¹⁰⁺¹²=3²=
=9.
А3.
x²+2x=16x-49;
x²+2x-16x+49=0;
x²-14x+49=0;
x²-2*7x+7²=0;
(x-7)²=0;
x₁=x₂=7.
B1.
x³-3x²-4x+12=0;
(x³-3x²)-(4x-12)=0;
x²(x-3)-4(x-3)=0;
(x-3)(x²-4)=0;
x-3=0; x=3;
x²-4=0; x²=4; x=±√4; x=±2;
x₁=-2; x₂=2; x₃=3
Объяснение:
1.Найдите координаты вектора f, равного разности векторов d(-8;5) и e(5;-2).
d -e={-8-5;5-(-2)}={-13;7}
2.Найдите координаты вектора t, равного сумме векторов s(-8;5) и c(5;-2).
s(-8;5) и c(5;-2) t= {-8+5;5+(-2)}={-3;3}
3. Найдите координаты середины отрезка BD,
если B(-8;5), D(4;1). М( (-8+4)/2 ; (5+1)/2) М( (-2 ; 3)
4. Найдите длину отрезка AB, если A(-2;7), B(-1;-3)
!АВ!= √(-1+2)²+(3-7)²=√17
5. Найдите длину вектора m, равного n+p , если n (6;-2), p (-7;-2).
n→ {6;-2}+p→{-7;-2} = {6+(-7);-2+(-2}= {-1;-4}
6. Найдите координаты вектора -5a , если a(-0,2;4) = {-1;-4}.
-5a ={-0,2*5;4*5} = {-1;20}
Объяснение:
2x^2-4*x*y-2y^2
x^2= x во второй степени также и с y