1) если х=0, то из первого уравнения у=±1, а из второго у=0, поэтому х≠0, разделим обе части 2 уравнения на х², получим
2+5(у/х)-7(у/х)²=0, пусть у/х=к, тогда к²-(5/7)к-2/7=0; по Виету к=1; к=-2/7;
1) к=1, тогда у=х, подставим в 1 уравнение. получим у²-у²+3у²=3;⇒у=±1; х=±1, решения системы (1;1); (-1;-1).
2) у/х=-2/7; у=-2х/7; подставим в 1 уравнение. получим
х²-(-2/7)х²+3(-2х/7)²=3;⇒98х²+14х²+12х²=147; 147=75х²;25х²=49;
х=±√(49/25)=±7/5=±1.4
3) если х=7/5=1.4, то у=-2*7/(7*5)=-2/5=-0.4
и третье решение (1.4; -0.4)
4) если х=-7/5, то у =2*7/(7*5)=2/5=0.4 и четвертое решение (-1.4; 0.4)
Заметим, что при умножении двух чисел последняя цифра равна последней цифре произведения последних цифр, т.е. если одно число оканчивается на цифру а, а другое - на цифру b, то произведение оканчивается на последнюю цифру ab.
7¹ = 7 - оканчивается на 7
7² = 7×7 = 49 - оканчивается на 9
7³ = 7²×7 - оканчивается на то же, что и 9×7, т. е. 63 - оканчивается на 3
7⁴ = 7³×7 - оканчивается на то же, что и 3×7, т. е. 21 - оканчивается на 1
7⁵ = 7⁴×7 - оканчивается на то же, что и 1×7, т. е. 7 - оканчивается на 7
Процесс повторяется:
7⁶ оканчивается на 9
7⁷ - на 3
7⁸ - на 1
7⁹ - на 7
7¹⁰ - на 9
и т.д.
Если степень делится на 4 (7⁴, 7⁸, 7¹² и т.д.) - число оканчивается на 1
Если при делении на 4 степень даёт остаток 1 (7¹, 7⁵, 7⁹ и т.д.) - число оканчивается на 7
Если даёт остаток 2 (7², 7⁶, 7¹⁰ и т.д.) - на 9
Если остаток 3 (7³, 7⁷, 7¹¹ и т.д.) - на 3
69 при делении на 4 даёт остаток 1 (68=4×17), значит 7⁶⁹ оканчивается на 7. Значит 7⁶⁹+3 оканчивается на 0 - т.е. делится на 10, что и требовалось доказать