(перед тем, как я отвечу хочу попросить вас подписаться, так я смогу отвечать на ваши вопросы всегда и , оцените это решение! )
«теоремы виета»
примеры:
x2 + 7x + 12 = 0 — это квадратное уравнение;
x2 − 5x + 6 = 0 — тоже ;
2x2 − 6x + 8 = 0 — а вот это нифига не , поскольку коэффициент при x2 равен 2.
~разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать — достаточно разделить все коэффициенты на число a. мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.
разделим каждое уравнение на коэффициент при переменной x2. получим:
3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
−4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. при этом возникли дробные коэффициенты.
надеюсь, я вам !
Відповідь:
Пояснення: Позначимо через 1 весь шлях, який мали пройти туристи. Розглядаємо умову про першого туриста: 1/2 км пройшов за 4 км/год, тоді відомо, що S=vt, де S- шлях, v - швидкість, t-час. -> t=S/v -> t_1=1/8 год=7.5 хв - час, який затратив перший турист на половину дороги. Аналогічно, на другу половину він затратив t_2=1/10=6 хв. Тобто весь час, який він затратив буде 7+6=13 хв
Так само рахуємо і для двох половинок другого туриста: t_3=1/12год=5 хв, t_4=1/6 год = 10 хв . В резкльтаті весь час 15 хв.
Порівняємо час першого і другого -> перший прийшов швидше
ответ: 3а) все действительные числа
3б) все числа, кроме - 7
3в) все числа
Объяснение: