Событие - 3 броска - независимые и, поэтому вероятности для каждого участника вычисляем по формуле:
P(A) = (p+q)³ = p³ + 3p²q + 3pq² + q³. p+q = 1.
Словами это будет как - три попадания ИЛИ 3 раза два попадания и один пром ах ИЛИ з раза одно попадание и два промаха ИЛИ три промаха.
Для первого спортсмена: p =0.6, q = 1-p = 0.4. ВАЖНО: все три промаха не учитываем.
P1(A) = 0.2166 + 0.432 + 0.288 + 0,064 - первый за 3 броска.
P2(A) = 0.343 + 0.441 + 0.189 +0,027 = 0.973 - второй за 3 броска.
Вероятность, что у первого будет больше попаданий запишем как сумму вероятностей событий (запишем в виде счета)
Р(1>2) = Р(3:2)+Р(3:1)+Р(3:0)+Р(2:1)+Р(2:0)+Р(1:0) =
= Р(3)*[Р(2)+Р(1)+Р(0)] + P(2)*[P(1)]+P(0)] + Р(1)*Р(0) =
= 0.2166*(0.441+0.189+0.027) + 0.432*(0.189+0.027) + 0.288*0.027 =
= 0.1423062 + 0.093312 + 0.00778 = 0.24333942 ≈ 0.243 - ОТВЕТ
(х - 5) - скорость второго велосипедиста
176/х - время, в течение которого первый велосипедист весь маршрут
176/ (х - 5) - время, в течение которого второй велосипедист весь маршрут
Уравнение
!76 / (х - 5) - 176 /х = 5
При х ≠ 5 приведём к общему знаменателю
176 * х - 176 * х + 176 * 5 = 5 * (х² - 5х)
5х² - 25х - 176 * 5 = 0
х² - 5х - 176 = 0
D = 25 - 4 * 1 * (- 176) = 25 + 704 = 729
D = √729 = 27
х₁ = (5 + 27) / 2 = 16 км/ч - искомая скорость первого велосипедиста
х₂ = (5 - 27) / 2 = - 11 - отрицательное значение не удовлетворяет условию
ответ: 16 км/ч