|5x-3|+|3x-5|=9x-10
Из определения модуля следует, что |a|>=0, |a|+|b|>=0
Отсюда:
9x-10>=0 <=> x>=10/9$ при x<10/9 корней нет
Найдем иные границы интервалов раскрытия модулей:
5x-3=0 <=> х=3/5 < 10/9
3x-5=0 <=> x=5/3>10/9/
3/5 10/9 5/3
|||>x
КОРНЕЙ НЕТ!
Отсюда: при x<10/9 - корней нет
При
10/9<= х <=5/3 имеем:
5x-3+(-3x+5)=9x-10
2x+2=9x-10
x=12/7
сравним 12/7 и 5/3:
12/7=36/21 > 5/3=35/21 => корень не входит интервал
При 10/9<= х <=5/3 корней нет
При x>=5/3
5x-3+3x-5=9x-10
8x-8=9x-10
- x = - 2
x=2
x=2 > 5/3, этот корень в исследуемый интервал входит.
ответ х=2
|x| = -x при х <0
Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять.
каждое подмодульное выражение = 0 при х = -2, 3, 2
Поставим эти числа на координатной прямой
-∞ -2 2 3 +∞
Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид
а) (-∞; -2)
-(х+2) +(х-3) +(х-2) = 3
-х-2+х-3+х-2 = 3
х = 10 ( в указанный промежуток не входит)
б)[-2; 2)
х+2 +х -3 +х-2 = 3
3х = 6
х = 2 ( в указанный промежуток не входит)
в) [2; 3)
х +2 +х -3 -х -2 = 3
х =6 ( в указанный промежуток не входит)
г)[3; +∞)
х +2 -х+3 -х+2 = 3
-х = -4
х = 4 ( в указанный промежуток входит)
ответ: 4