К1, К2, К3, К4, К5 С3, С4, С5, С6 3 и 5 - простые числа, т. е. получаем комбинации К1-С3-К3 и К1-С5-К5. Поскольку карточка К1 только одна, объединяем эти две комбинации в одну: К3-С3-К1-С5-К5. Среди оставшихся С3 и С4 нет кратного К5. Это означает, что карточка К5 - обязательно крайняя. Дальше продолжаем расладывать в левую сторону. Кратным к К3 является С6: С6-К3-С3-К1-С5-К5. Делителем С6, помимо К3, является К2: К2-С6-К3-С3-К1-С5-К5. Кратным к К2 является С4: С4-К2-С6-К3-С3-К1-С5-К5. Делителем С4 является К4: К4-С4-К2-С6-К3-С3-К1-С5-К5. Сумма чисел на средних трёх картах: 6+3+3=12.
y=5x прямая пропорциональность, значит график должен проходить через начало координат; точка (5;25) принадлежит графику - это рисунок №2
у=1-2х - линейная функция, график должен проходить через точку (0;1), далее, k=-2, значит угол наклона к оси ОХ - тупой - это рисунок № 3
у=5-х - линейная функция, график должен проходить через точку (0;5), далее, k=-1, значит угол наклона к оси ОХ - тупой - это рисунок № 1
у=2х-7 - графика этой функции на рисунках нет (график у=2х-7 должен проходить через точку (0;-7) и т.к. k=2, угол наклона к оси - острый).
На рисунке №4 изображен график функции у=2х+7, которая отсутствует в левом столбце.