1. Нет например x=0, y=1 2.Из условия x0=-a=2, отсюда a=-2, y=x^2-4x+3, подставляем (3;0), получаем 0=9-12+3=0 значит ответ да 3. Ну по идее нужно обнулить икс, поэтому 2x-1>0, x-1<0, x-2<0, получаем x>1/2, x<1, x<2, то есть если a=2 у нас все числа от 1/2 до 1 являются корнями. ответ да 4.Рассмотрим x^3-ax-1=0. x=0 не является корнем ни при каком a, значит это уравнение равносильно исходному. Если у кубического многочлена 2 действительных корня, то обязательно один из них кратный (потому что комлексных корней у многочлена четное количество), отсюда x^3-ax-1=(x-p)^2(x-t). Раскрываем скобки приравниваем соответствующие коэффициенты друг другу получаем что , при этом корни p и t не совпадают, значит такое a подходит. ответ да
Треугольник ba1c1 - равносторонний, все углы в нем 60 градусов. Это все решение (причем самое полное и точное из всех). Но можно не останавливаться на достигнутом, и соединить вершины этого треугольника с вершиной куба d. Получается пирамида, у которой все грани - равносторонние треугольники. То есть получился тетраэдр (или, если хотите, правильный тераэдр, хотя это уточнение и лишнее - тетраэдром называют именно правильную треугольную пирамиду с равными ребрами), вписаный в куб. Конечно же, можно и наоборот - для любого тетраэдра можно построить такой куб, что ребра тетраэдра будут диагоналями граней куба.Следствия.Во первых, скрещивающиеся ребра тетраэдра взаимно перпендикулярны (в данном случае, к примеру, bd перпендикулярно a1c1, поскольку a1c1 II ac, а ac и bd - диагонали квадрата abcd, точно также доказывается перпендикулярность остальных пар скрещивающихся ребер тетраэдра).Во вторых, отрезок, соединяющий середины скрещивающихся ребер тетраэдра, перпендикулярен этим ребрам и равен длине ребра тетраэдра, умноженной на √2/2. В самом деле, это отрезок, соединяющий центры противоположных граней куба, то есть он равен стороне куба, а ребро тетраэдра равно диагонали грани куба, откуда и получатеся соотношение длин.Конечно, к задаче это имеет косвенное отношение (точнее, не имеет ни какого), но уж больно неприятно выдавать решение, занимающее полстрочки.
3
Объяснение:
OC/OE=16/5=3,2⇒OE помещается в OC 3 (целых) раза.