Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²
11,1 (км/час) - собственная скорость катера;
2,1 (км/час) -скорость течения реки.
Объяснение:
Катер за 2 ч против течения реки проехал 18 км, а по течению за 1ч 40 мин на 4 км больше. Найдите скорость течения реки и собственную скорость катера.
х - собственная скорость катера
у - скорость течения реки
х+у - скорость катера по течению
х-у - скорость катера против течения
1 час 40 минут=1 и 2/3 часа=5/3 часа.
Согласно условию задачи составляем систему уравнений:
Формула движения: S=v*t
S - расстояние v - скорость t - время
(х-у)*2=18
(х+у)*5/3=22
Второе уравнение умножить на 3, чтобы избавиться от дроби:
(х-у)*2=18
(х+у)*5=66
Раскрыть скобки:
2х-2у=18
5х+5у=66
Разделить первое уравнение на 2 для упрощения:
х-у=9
5х+5у=66
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=9+у
5(9+у)+5у=66
45+5у+5у=66
10у=66-45
10у=21
у=2,1 (км/час) -скорость течения реки
х=9+у
х=9+2,1
х=11,1 (км/час) - собственная скорость катера
Проверка:
(11,1-2,1)*2=9*2=18
(11,1+2,1)*5/3=(13,2*5)/3=22, верно.