М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sasha030506
Sasha030506
01.06.2020 00:25 •  Алгебра

Найдите корни уравнения на заданном промежутке: sinx=(корень2)/2, x принадлежит [-2п; 2п]

👇
Ответ:
Russ1357900
Russ1357900
01.06.2020

sinx=(корень2)/2 => x = PI/4

x = (-1)^n*PI/4 + PIn

n = - 2; x = PI/4 - 2PI = - 7PI/4

n = - 1; x = -PI/4 - PI = - 5PI/4

n = 0; x = PI/4

n = 1; x = -PI/4 + PI = 3PI/4

n - 2; x = PI/4 + 2PI = 9PI/4 находится за пределами области значения Х.

n = -2. -1. 0 . 1. 4 корня.

4,6(21 оценок)
Открыть все ответы
Ответ:
arinuchik
arinuchik
01.06.2020

Відповідь:

Шість головних діагоналей дорівнюють подвоєній стороні шестикутника.

Шість додаткових діагоналей дорівнюють стороні шестикутника помноженій на корень квадратний із трьох.

Пояснення:

У правильному шестикутнику є шість головних діагоналей, що проходять крізь його геометричний центр ( центр описаної та вписаної окружності ), одна з них намальована синім кольором на малюнку. Довжина цієї діагоналі дорівнює подвоєній стороні шестикутника. Тому, що у правильному шестикутнику сторона дорівнює радіусу описаної окружності, а діагональ дорівнює двом радіусам.

Існує ще шість додадкових діагоналей, що не проходять крізь центр шестикутника, одна з таких діагоналей намальована червоним кольором на малюнку. Довжина такої діагоналі дорівнює стороні шестикутника помноженій на корень квадратний із трьох. Тому, що ця діагональ утворює рівнобічний трикутник з кутом при основі 30°, а основа трикутника дорівнює стороні шестикутника помноженій на 2 × cos (30°) = sqrt (3).


Як знайти діагоналі правильного шестикутника, якщо відома довжина його сторони?
4,6(3 оценок)
Ответ:
romapigula1357
romapigula1357
01.06.2020

x ∈ (-∞, -1)   ∪ (-1/3, 0] ∪ [4, +∞)

Объяснение:

находим ОДЗ  x ∉ [ -1, -1/3 ] отсюда>>

область допустимых значений: x ∈ (-∞,-1)  ∪ (-1/3, +∞)

Для а>1 выражение log a(x) ≥ log a(y)  равно x≥y

4x^2 + 1 ≥ 3x^2 + 4x + 1

4x^2 ≥ 3x^2 + 4x

4x^2 - 3x^2 - 4x ≥ 0

x^2  - 4x ≥ 0

x ( x - 4 ) ≥ 0

возможны 2 случая когда произведение a*b будет ≥ 0.

(либо два отрицательных)

(либо два положительных)

Проверяем

x≥0     <=>  x≥0  <=>    x ∈ [4 , +∞ )

x-4≥0          x≥4

x ≤ 0  <=>  x≤0  <=>    x ∈ ( - ∞, 0 ]

x - 4 ≤0       x≤4

находим объединение для x ∈ ( - ∞, 0 ] и  x ∈ [4 , +∞ ), получаем множество решений

МНОЖЕСТВО РЕШЕНИЙ   x∈ (- ∞,0] ∪ [4, +∞) ,

ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ  x ∈ (-∞,-1)  ∪ (-1/3, +∞)

нахождение пересечения множеств решений  и области допустимых значений

x ∈ (-∞, -1)   ∪ (-1/3, 0] ∪ [4, +∞)

4,6(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ