у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
Объяснение:
К данному уравнению x−y=4 выбери из предложенных уравнений второе уравнение так, чтобы полученная система не имела решений:
ответ (можно получить, используя построение):
2x−y=5
y+x=−4
y=x+3
Можно не использовать построение, а ответ получить, опираясь на знания)
Для начала все уравнения запишем в виде уравнений функций:
x−y=4 2x−y=5 y+x=−4 y=x+3
-у=4-х -у=5-2х у= -4-х
у=х-4 у=2х-5 у= -х-4
Известно, что система не имеет решений, если графики функций, выраженных этими уравнениями, параллельны.
Известно также, что графики линейных функций параллельны при одинаковых коэффициентах при х.
Смотрим на коэффициенты при х.
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
а) 180-90=90° (угол 1 + угол 2)
пусть угол 2 = х, тогда 1 = 2х
2х+х = 90; 3х=90
х=30° (угол 2)
2х= 30*2 = 60° (угол 1)
б) равнобедренный ∆,
значит угол 2 тоже = 70°
угол 1 = 180-70-70= 40°
в) равнобедренный ∆,
значит угол 1 = углу 2 = (180-90):2 = 45°
г) угол, смежный с углом в 150° = 180-150=30°
Значит угол 1 + угол 2 = 180-30 = 150°
Пусть угол 1 = х, тогда угол 2 = х+10
х+х+10= 150°; 2х+10 = 150°
х= 70° (угол 1)
х+10 = 70+10 = 80° (угол 2)
д) Угол, смежный с углом в 110° = 180-110=70°
∆ равнобедренный,
значит угол 1 = 70°
угол 2= 180-70-70 = 40°
е) Угол, смежный с углом в 40° = 180-40= 140°
Значит угол 1 + угол 2 = 180-140 = 40°
Угол 1= 5х, угол 2 = 3х
5х+3х= 40°; 8х= 40°
х=5
5х= 25° (угол 1)
3х= 15° (угол 2)