Объяснение:
1)(2a - 5b)·(... - ...) = 6a^3 - 15a^2*b - 14ab + ...;
6a^3 : 2a = 3a^2
14ab : 2a = 7b
(2a - 5b)(3a^2 - 7b) = 6a^3 - 15a^2*b - 14ab + 35b^2
2)(... - ...)·(6x^2 - 5y^2) = 12x^3 + 42x^2*y - ... - 35y^3;
12x^3 : 6x^2 = 2x
-35y^3 : (-5y^2) = 7y
(2x + 7y)(6x^2 - 5y^2) = 12x^3 + 42x^2*y - 10xy^2 - 35y^3
3)(3a + 4c)·(... + ...) = 20ac + 8bc + 6ab + ...;
20ac : 4c = 5a
6ab : 3a = 2b
(3a + 4c)(5a + 2b) = 20ac + 8bc + 6ab + 15a^2
4)(... + ...)·(2a + 5b) = ... + 5ab + 8ac + 20b
Здесь опечатка, в конце должно быть 20bc
5ab : 5b = a
8ac : 2a = 4c
(a + 4c)(2a + 5b) = 2a^2 + 5ab + 8ac + 20bc
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2