М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kyki510
Kyki510
08.08.2021 23:53 •  Алгебра

Нужна . хочу понять эту тему. буду за объяснения.

1)начертите график и его трансформацию: картинка.

2) опишите поведение графика слева и справа: картинка

👇
Открыть все ответы
Ответ:
ЖекЖек
ЖекЖек
08.08.2021
Это линейная функция графиком которой является прямая ,чтобы построить прямую достаточно знать две точки
х=0 тогда у =-3·0+4= 4  (0;4)-первая точка
у=-2   -2=-3х+4
             -3х=-2-4
               -3х--6
                 х=-6÷(-3)
                 х=2  
(2;-2) вторая точка  
отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции
если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А
Подставим координаты точку и проверим
-130=-3·42+4
-130=-132+4
-130 ≠-128 это значит что график не проходит через точку А(42;-130)
4,7(89 оценок)
Ответ:
kirill4389
kirill4389
08.08.2021
Y = (x + 2)⁻³ + 1 = [(x + 3)(x² + 3x + 3)] / (x + 2)³
Для нахождения промежутков знакопостоянства функции надо решить неравенства f (x) > 0; f (x) < 0.
1) Проверим условие: f (x) > 0
 [(x + 3)(x² + 3x + 3)] / (x + 2)³ > 0
Дробь больше нуля, когда числитель и знаменатель одного знака. 
a)  [(x + 3)(x² + 3x + 3)] > 0, x + 3 > 0, x > - 3
(x + 2)³ > 0, x > - 2
x∈(-2;+ ≈ )
b)  [(x + 3)(x² + 3x + 3)] < 0, x + 3 < 0, x < - 3
(x + 2)³ < 0, x < - 2
x∈(-≈ ; - 3)
 Таким образом f (x) > 0 при x∈(-2;+ ≈ ) и x∈(-≈ ; - 3)
2) Проверим условие:  f (x) < 0.
 [(x + 3)(x² + 3x + 3)] / (x + 2)³ < 0
Дробь меньше нуля, когда числитель и знаменатель разных знаков. 
a)  [(x + 3)(x² + 3x + 3)] > 0, x + 3 > 0, x > - 3
(x + 2)³ <  0, x< - 2
x∈(-3;- 2 )
b)  [(x + 3)(x² + 3x + 3)] < 0, x + 3 < 0, x < - 3
(x + 2)³ > 0, x >  - 2
решений нет
 Таким образом  f(x) < 0 при x∈(-3;- 2 )
4,7(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ