Объяснение:
в первом можно извлечь кубический корень с двух частей уравнения и получить квадратное уравнение x^2=6x-5 где x=5 x=1 (с арифметикой могу наложать сори )
а во втором сначала в функцию p(a)посдставляем a выходит a(6-a)/a-3
потом вместо а подставляем 6-a выходит (a-6)(6-(6-a)/(6-a)-3
упрощаем второе выражение (a-6)(a)/3-a ->a^2-6a/3-a
а теперь делим первое на второе
a(6-a)/a-3:a^2-6a/3-a получается сверху a(6-a)*(a-3) а снизу
(a-3)a(a-6)
сокращаем получаем -1 так как поменяли местами a-6
Объяснение:
(0;5), (10;2), (3;-6), (-4;-5), (2;9)
В каждой паре на первом месте стоит значение х ,а на втором - у.
При х=0,у=5 2x-4y=12 2*0-4*5≠12 Значит пара (0;5) не является решением уравнения.
При х=10,у=2 2*10-4*2=12 Значит пара (10;2) является решением уравнения.
При х=3,у= -6 2*3-4*(-6)≠12 Значит пара (3;-6) не является решением уравнения.
При х= -4,у= -5 2*(-4)-4*(-5)=12 Значит пара (-4;-5) является решением уравнения.
При х=2,у=9 2*2-4*9≠12 Значит пара (2;9) не является решением уравнения.
Объяснение: