Пусть S1 - число задач, решенных только Томой, S2 - число задач, решенных только Артемом, S3 - число задач, решенных только Верой, S12 - число задач, решенных только Антоном и Артемом, и так далее. Тогда Антон решил S1+S12+S13+S123 = 60 задач, Артем решил S2+S12+S23+S123 = 60 задач, Вера решила S3+S13+S23+S123 = 60 задач. Общее число задач : S1+S2+S3+S12+ S13+S23+S123=100. Сложим первые три равенства и вычтем последнее, умноженное на 2. Получим:
-S1-S2-S3+S123=-20
Это значит, что трудных задач на 20 больше, чем легких, потому что S1+S2+S3 - число трудных задач, а S123 - число легких
Что бы сравнить два числа a и b, нам дано равенство : b+2=a+√5 .
Глядя на него, мы можем понять, что если к числу b добавить 2, то оно будет равно числу а, которому добавили √5 .
Без решений и подбора чисел, можно узнать, что же больше, достаточно найти чему будет равен √5.
√5 = 2,24 .
Сравним числа, которые мы добавляем к нашим неизвестным 2 и 2,24 и увидим, что число 2 меньше.
Получается, что если мы к числу а добавим число большее, чем к числу b, то равенство выполняется.
Следовательно a < b.
Смотри, когда цифры повторяются, значит можно их записать в периоде.
Вот например 1/3=0,33333, повторяется цифра 3,значит мы пишем ее в периоде. И так с остальными числами.
1/3=0,(3)
27/99=0,(27) т.к. число 27 повторяется
123/180=0,68(3) т. к. цифры 6,8 не повторяются, мы их не пишем в периоде, а число 3 повторяется, поэтому пишем.
61/495=0,1(232)