Будь-яка квадратична функція (тобто, парабола) має вертикальну вісь симетрії, яка проходить через вершину цієї параболи.
Якщо f(4)=f(20), то це означає, що точки на параболі з абсцисами 4 та 20 симетричні відносно вісі симетрії параболи. З цього випливає, що вісь знаходиться посередині між точками з абсцисами 4 та 20, тобто, (4+20)/2 = 12, або ж х=12 - рівняння, яким задається вертикальна вісь симетрії.
З іншого боку, точки з абсцисами -5 та деяким невідомим числом "х" теж симетричні відносно цієї ж вісі симетрії х=12.
Звідси складемо рівняння відносно того, що ці дві точки також рівновіддалені від вертикальної прямої х=12:
(-5+х)/2 = 12
-5+х = 24
х = 29
Відповідь: х = 29
V₁=V - V₀ (за V₀ примем скорость течения реки,а за v -скорость катера)-это когда он ехал против течения;
V₂=V+V₀ -скорость по течению;
V₃=V -скорость в стоячей воде;
t₁ -время против течения;
t₂ -время по течению;
Теперь вспомним формулу пути: S=V*t (где V -скорость катера,а t -его время)
По условию сказано,что по течению за 5 часов он путь на 20 км больше чем против течения за 4 часа.
Теперь подставим в формулу пути значения времени и формулу скорости(выведенную вначале).
S₁=V₁×t₁=(вместо V₁ пишем V -V₀);=(V-V₀)×4;(Время нам дано по условию)
S₂=V₂×t₂=(вместо V₂ пишем V+V₀);=(V+V₀)×5;
Получаем систему уравнений прощения, знака системы не нашёл):
(15,5-V₀)×4=S₁
(15,5+V₀)×5=S₂
Но мы знаем разницу S₂-S₁=20
И теперь вместо S₂ и S₁ подставляем в эту разницу (15,5+V₀)×5 и (15,5-V₀)×4 соответственно.
После раскрытия скобок и привидения подобных получаем: 9V₀=4,5.
Отсюда легко находим V₀. V₀= 0,5км/час