Объяснение:
1. Пусть на одном складе было х тонн картошки.
2. Тогда на другом складе было 2,5х тонн картошки.
3. На одном складе стало (х + 72) тонн картошки.
4. На другом складе стало (2,5х + 30) тонн картошки.
5. Составим уравнение и узнаем сколько картошки было на втором складе первоначально, если в итоге на обоих складах картошки стало поровну.
х + 72 = 2,5х + 30;
72 - 30 = 2,5х - х;
1,5х = 42;
х = 42 : 1,5;
х = 28 тонн - картошки на одном складе.
6. 28 * 2,5 = 70 тонн - картошки на другом складе
ответ: На одном складе было первоначально 28 тонн картошки, а на другом 70 тонн.
Пусть оно является рациональным числом.
Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая.
Возведя в квадрат, получаем, что 17 = m²/n²
Тогда 17n² = m²
Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.
Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.