Что такое |x| ? |x|=x при x≥0 и |x|=-x при x<0 поэтому разобьем систему на 2. 1. x<0 y=-x+4 y=-5/(x-2) Решаем -x+4=-5/(x-2) x≠2 (x-2)(-x+4)=-5 -x²+4x+2x-8+5=0 -x²+6x-3=0 x²-6x+3=0 D=6²-4*3=36+12=24 √D=2√6 x₁=(6-2√6)/2=3-√6 - отбрасываем, так как по условию x<0 x₂=(6+4√3)/2=3+2√3 - отбрасываем, так как по условию x<0 x=3-2√3 y=-3+2√4+4=1+2√3 2. x≥0 y=x+4 y=-5/(x-2) Решаем x+4=-5/(x-2) x≠2 (x-2)(x+4)=-5 x²+4x-2x-8+5=0 x²+2x-3=0 D=2²+4*3=16 √D=4 x₁=(-2-4)/2=-3 - отбрасываем, так как по условию x≥0 x₂=(-2+4)/2=1 x=1 y=1+4=5 ответ: x=1 y=5
4.) если один из углов равен 80°, то :
- смежный ему угол равен 180-80=100°
- вертикальный угол равен 80°
- внутренний односторонний равен 100°
- внутренний накрест лежащий равен 80°
- соответственный равен 80°
5.) если один из углов на 50° больше
другого, то:
Пусть один из углов равен х°, тогда смежный ему равен ( х + 50 )°. Зная, что сумма смежных углов равна 180°, составляем уравнение:
х + х + 50 = 180
2х = 180 - 50
2х = 130
х = 65
65° - один из углов
- смежный ему угол равен 65 + 50 = 115°
- вертикальный угол равен 65°
- внутренний односторонний равен 115°
- внутренний накрест лежащий равен 65°
- соответственный равен 65°
6.) если разность односторонних углов
равна 60°, то:
Пусть один из односторонних углов равен х°, тогда второй - ( 180 - х )°. Зная, что их разность равна 60°, составляем уравнение:
180 - х - х = 60
120 = 2х
х = 60
60° - один из односторонних углов
- смежный ему угол равен 180 - 60 = 120°
- вертикальный угол равен 60°
- внутренний односторонний равен 120°
- внутренний накрест лежащий равен 60°
- соответственный равен 60°