Прогрессия арифметическая - из уравнения видно, что каждое последующее число отличается от предыдущего на 5 - это разность прогрессии.
Нам нужно найти порядковый номер последнего члена прогрессии. Для этого на время забудем про х и представим первый член, как число 3, а последний - как число 58. Тогда мы сможем найти его порядковый номер по формуле: a(n) = a(1) + (n-1)d
58 = 3 + (n-1)*5
5(n-1) = 55
n-1 = 11
n = 12
Последнее число прогрессии - 12-ое. Теперь используем формулу суммы арифметической прогрессии для нахождения х.
(a(1) + a(12))/2*12 = 456
a(1) + a(12) = 76 (здесь не забываем, что a(12) = a(1) + 11d
2*a(1) + 11d = 76
2a(1) = 21
a(1) = 10,5
То есть х*х + х + 3 = 10,5
х² + х - 7,5 = 0
Решаем уравнение и получаем корни х(1,2) = (-1 ± √31)/2
Корни, конечно, некрасивые, но это и есть ответ сложной задачи...
Успехов!
Первая бригада выполняет:
Вторая бригада выполняет:
Вместе две бригады выполняют:
Составим и решим уравнение:
6х+6*(х+5)=х(х+5)
6х+6х+30=х²+5х
12х+30-х²-5х=0
х²-7х-30=0
D=b²-4ac=(-7)²-4*1*(-30)=49+120=169 (√169=13)
x₁=
x₂=
Значит, вторая бригада выполнит работу за 10 часов, а первая за х+5=10+5=15 часов.
ОТВЕТ: первая бригада выполнит работу за 15 часов; вторая - за 10 часов.