Пусть на расстояни х км от пункта А состоялась встреча - это так же расстояние которое проехал мотоциклист за 1 ч 20 мин = 80 мин, поэтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
Пусть v км/ч - скорость первого автомобиля, s -расстояние между А и В. Первый автомобиль затратил на весь путь время t1=s/v, второй - время t2=s/(2*(v-6))+s/(2*56). По условию, t1=t2, откуда получаем уравнение s/v=s/(2*(v-6))+s/(2*56), или - по сокращении на s - уравнение 1/v=1/(2*(v-6))+1/(2*56). Приведя все дроби к общему знаменателю 2*56*v*(v-6), получаем уравнение 112*(v-6)/(2*56*v*(v-6))=56*v/(2*56*v*(v-6))+v*(v-6)/(2*56*v*(v-6)). Из равенства знаменателей следует равенство числителей, откуда получаем уравнение 112*v-672=56v+v²-6v, или v²-62*v+672=0. Дискриминант D=(62)²-4*1*672=1156=34². Тогда v1=(62+34)/2=48 км/ч, v2=(62-34)/2=14 км/ч. Но так как по условию v>45 км/ч, то v=48 м/ч. ответ: 48 км/ч.
80*80/x-80=80*180/(80-x)-180
8*(80/x-1)=18*(80/(80-x)-1)
4*(80-x)/x=9*(80-80+x)/(80-x)
4*(80-x)/x=9x/(80-x)
4*(80-x)^2=9x^2
4*(6400-160x+x^2)=9x^2
25600-640x+4x^2=9x^2
5x^2+640x-25600=0
x^2+128x-5120=0
D=36864=192^2x
х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным)
x2=(-128+192)/2=32
х=32
ответ: 32 км