1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
1)Б
2)Б
3)Г
4)А или Г
Объяснение:
1) выражение под корнем больше или равно нулю, значит что все - числа должны давать + и при решении получать 0.
2)
f(-x) = f(x) значит парна
f(-x)= f(-x) не парна
3)не уверен, но если там квадрат то все правильно, а так просто место Х подставляешь значение в скобках.
4)опять же не вижу степени, там где парная степеть будет парабала, а она семетрична то-беж парна.