Формулы для квадратов (a + b )2 = a 2 + 2ab + b 2– квадрат суммы (a – b )2 = a 2 – 2ab + b 2– квадрат разностиa 2 – b 2 = (a – b )(a + b )– разность квадратов (a + b + c )2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc Формулы для кубов (a + b )3 = a 3 + 3a 2b + 3a b 2 + b 3– куб суммы (a – b )3 = a 3 – 3a 2b + 3a b 2 – b 3– куб разностиa 3 + b 3 = (a + b )(a 2 – ab + b 2)– сумма кубовa 3 – b 3 = (a – b )(a 2 + ab + b 2)– разность кубов Формулы для четвёртой степени (a + b )4 = a 4 + 4a 3b + 6a 2b 2 + 4a b 3 + b 4(a – b )4 = a 4 – 4a 3b + 6a 2b 2 – 4a b 3 + b 4a 4 – b 4 = (a – b )(a + b )(a 2 + b 2) Формулы для n -той степени (a + b )n = an + na n – 1b + n (n – 1)a n – 2b 2 + ..+ n !an – kbk + ..+ bn 2k !(n – k )!(a – b )n = an – na n – 1b + n (n – 1)a n – 2b 2 + ..+ (-1)k n !an – kbk + ..+ (-1)nbn 2k !(n – k )!
5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π