Пусть х - скорость легкового автомобиля, тогда скорость грузового - (х-20). Врямя в пути определяется как отношение пройденного пути к скорости. Тогда Время в пути для легкового автомобиля - 30/х, для грузового - 30/(х-20). 15 минут=15/60 часа=1/4 часа. Составим уравнение
(30/х)+(1/4)=30/(х-20)
(30/х)-(30/(х-20))=-1/4
Приведем к общему знаменателю
(30(х-20)-30х)/(х(х-20))=-1/4
-600/(х^2-20x)=-1/4
х^2-20x=-600/(-1/4)
х^2-20x=2400
х^2-20x-2400=0
D=400+4*2400=10000
x1 =(20-100)/2=-40 - не удовлетворяет условию
х2=(20+100)/2=60 (км/ч) - скорость легкового автомобиля.
Тогда 60-20=40 (км/ч) - скорость грузового автомобиля
1.
ОДЗ: арксинус определен при
Найдем синус левой и правой части:
Уравнение распадается на два. Для первого уравнения получим:
Решаем второе уравнение:
Таким образом, уравнение имеет единственный корень 0.
ответ: 0
2.
ОДЗ: арксинус определен при
Найдем синус левой и правой части:
Так как в правой части стоит положительная величина, то и левая часть должна быть положительной, то есть .
Возведем в квадрат обе части:
Решим биквадратное уравнение:
Находим х:
Однако, так как было выявлено ограничение , то отрицательный корень не попадает в ответ.
Оценив значение полученного корня, мы понимаем, что он удовлетворяет исходной ОДЗ:
ответ:
Достаточно просто . По свойству параллелограмма его противоположные стороны попарно равны. меньшую сторону представляем за х , тогда большая будет равна х+3 .Отсюда получаем х+(х+3)+х+(х+3)=160 получаем 4х+6=160 4х=154 х =38,5 см.
Объяснение: