Согласно графика, координаты точки пересечения графиков (2; -2)
Объяснение:
1. Функция задана формулой y = 3x – 4. Принадлежат ли графику функции точки А (1;1) и В (2; 2)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
а) А (1;1) y = 3x – 4
1=3*1-4
1≠ -1, не принадлежит.
б)В (2; 2) y = 3x – 4
2=3*2-4
2=2, принадлежит.
2. Постройте график функции y= – 3x + 4 и укажите координаты точек пересечения графика с осями координат.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y= – 3x + 4
Таблица:
х -1 0 1
у 7 4 1
Согласно графика, координаты точки пересечения с осью Ох (4/3; 0)
Согласно графика, координаты точки пересечения с осью Оу (0; 4)
3. Постройте график зависимости y = kx, если он проходит через точку А (4; -8). Найдите угловой коэффициент k.
Нужно подставить известные значения х и у (координаты точки А) в уравнение и вычислить k:
-8=k*4
-4k=8
k= -2
Уравнение: у= -2х
Таблица:
х -1 0 1
у 2 0 -2
4. Найдите точку пересечения графиков функций y = –2 и y = –0,5x – 1.
(Постройте два графика в одной системе координат и запишите координаты точки пересечения двух графиков).
а)y = –2
График - прямая линия, параллельна оси Ох и проходит через
точку у= -2;
б)y = –0,5x – 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -2 0 2
у 0 -1 -2
Согласно графика, координаты точки пересечения графиков (2; -2)
26,
т.к. по условию в графу ответа надо писать
Объяснение:
Из условия ни разу не ясно, что есть такое некая непонятная "его длина".
Но по всей видимости,
а) это диаметр условной окружности, которую образует Кольцевая линия.
б) это (ну, блин, грамотеи!) длина окружности, которую образует Кольцевая линия.
а) Найдем диаметр условной окружности, которую образует Кольцевая линия.
Обозначим её как d.
Площадь Центрального района S можно вычислить следующим образом:
где r - это радиус условной окружности Кольцевой, или половина диаметра, т.е. d/2. Отсюда.
б) Найдем длину окружности, которую образует Кольцевая линия. Обозначим её как l.
Длина окружности равна
где d - условный диаметр (см. (а)).
Согласно требованиям задачи в ответ записываем
т.е.
ответ: 26