1) Найдём ∠АВС. Он будет равен 180° - 80° = 100°. 2) Теперь нам нужно вычислить чему равны углы при основании равнобедренного ΔАВС (∠ВАС и ∠ВСА). Мы знаем что они равны. Мы знаем, что сумма углов в треугольнике равна 180°. Найдём угол при основании равнобедренного треугольника: Обозначим угол при основании буквой А для удобства. Значит 2а = 180° - 100° 2а = 80° а = 40° Угол при основании треугольника АВС равен 42°. 3) Зная ∠ВАС(40°) находим ∠ВАМ(40°:2=20°) 4) Зная величины двух углов ΔВАМ вычислим величину ∠АМВ: 180° - 100° - 20°= 60° ответ: ∠АМВ = 60°
Перед нами рекуррентный задания последовательности. Указан первый член последовательности (это число 4) и правило, по которому, зная предыдущий член, можно найти следующий за ним. Формула означает, что каждый следующий член последовательности будет получаться из предыдущего прибавлением к нему двух. Получим, что Продолжив указанные действия, получим последовательность 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24; 26; ...
Второй решения: Последовательность, в которой каждый член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом (в нашем случае числом 2), является арифметической прогрессией. ответ:
Четность функции allcalc.ru
parity f(x)=
x^3/(4(2-x)^2 )
Вычислить
Основные функции
\left(a=\operatorname{const} \right)
x^{a}: x^a
модуль x: abs(x)
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]
\operatorname{arcctg} x: ArcCot[x]
\operatorname{arcsec} x: ArcSec[x]
\operatorname{arccosec} x: ArcCsc[x]
\operatorname{ch} x: cosh[x] или Cosh[x]
\operatorname{sh} x: sinh[x] или Sinh[x]
\operatorname{th} x: tanh[x] или Tanh[x]
\operatorname{cth} x: coth[x] или Coth[x]
\operatorname{sech} x: sech[x] или Sech[x]
\operatorname{cosech} x: csch[x] или Csch[е]
\operatorname{areach} x: ArcCosh[x]
\operatorname{areash} x: ArcSinh[x]
\operatorname{areath} x: ArcTanh[x]
\operatorname{areacth} x: ArcCoth[x]
\operatorname{areasech} x: ArcSech[x]
\operatorname{areacosech} x: ArcCsch[x]
[19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
Объяснение: