1)
у=2х+1
у=2х-3
у=х+7
Эти линейные функции вида у=kx+b, где k-это угловой коэффициент, с его изменением будет меняться угол наклона прямой к оси Ох, значит, функции с одинаковыми угловыми коэффициентами будут параллельны друг другу. Отсюда параллельные функции:
у=2х+1 и у=2х-3. Эти графики функций можно построить по двум точкам каждый. Находим точки:
у=2х+1
х=0
у=2*0+1=0+1=1
(0;1)
х=1
у=2*1+1=3
(1;3)
у=2х-3
х=0
у=2*0-3
у=-3
(0;-3)
х=1
у=2*1-3=-1
(1;-1)
у=х+7
х=0
у=7
(0;7)
х=2
у=2+7=9
(2;9)
По этим точкам строим графики.
2)
Поскольку графики прямые, два из которых параллельны, то эти 2 графика будут пересекать третий, т.е. у=2х+1 и у=2х-3 будут пересекать график у=х+3, а график у=х+7 пересекать его не будет, т.к. он с тем же угловым коэффициентом.
Для нахождения координат пересечения приравняем функции:
2х+1=х+3
2х-х=3-1
х=2
у=2+3=5
координата пересечения (2;5)
2х-3=х+3
2х-х=3+3
х=6
у=6+3=9
(6;9)
Объяснение:
1. √(5cosx-cos2x)+2sinx=0
√(5cosx-cos2x)= -2sinx
ОДЗ: -1<sinx<0 - x в четвертой четверти
Возводим в квадрат:
5cosx-cos2x=4sin^2x
5cosx-(2cos^2x-1)=4(1-cos^2x)
2cos^2x +5cosx-3=0
D=49
cosx=1/2 -> x= плюс минус pi/3 +2pi*k
cosx=-3 - не подходит
ответ: x= плюс минус pi/3 +2pi*k
2. |sinx|+ √3*cosx=0
|sinx| = -√3*cosx
Возможны 2случая:
а) sinx = -√3*cosx
sinx+√3*cosx=0 делим на 2
1/2sinx+√3/2*cosx=0
sin(x+pi/3)=0
x=pi*k-pi/3
б) -sinx=-√3*cosx
sinx=√3*cosx
sinx-√3*cosx=0 делим на 2
1/2sinx-√3/2*cosx=0
sin(x-pi/3)=0
x=pi*n+pi/3
ответ:x=pi*k-pi/3 и x=pi*n+pi/3
3. сosx/(1-sinx)=0
ОДЗ: sinx не равен 1
cosx=0 -> x=pi/2+pi*k
НО: по ОДЗ синус не равен 1 => один корень выпадает и ответ: x= -pi/2+2pi*k
Oтвет: x= -pi/2+2pi*k
a^2+b^2=200
a+b=16
a=16-b
(16-b)^2+b^2=200
256-32b+b^2+b^2=200
2b^2-32b+56=0
D=576
b1=14, b2=2
a1=2, a2=14
ab=28.