Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
ответ: 0,3
данную задачу решим с арифметической прогрессии:
a₁ = 20 мин - продолжительность в первый день
d = 10 мин - ежедневное увеличение
aₙ = 2 часа = 120 мин - n - день в который продолжительность 2 часа
n - ?
Sₙ - ?, мин общее время на воздухе
Найдем на какой по счёту день длительность прогулки достигнет 2 ч:
aₙ = a₁ + (n - 1)*d
120 = 20 + (n - 1)*10
120 = 20 + 10n - 10
120 = 10 + 10n
10n = 110
n = 110:10
n = 11 - день на который продолжительность прогулки достигнет 2 ч.
Найдем сколько всего времени за эти дни ребёнок проведёт на воздухе S₁₁:
a₁₁ = 120 мин
Sₙ = (a₁ + aₙ)/2*n
S₁₁ = (a₁ + a₁₁)/2*n
S₁₁ = (20 + 120)/2*11
S₁₁ = 140/2*11
S₁₁ = 70*11
S₁₁ = 770 мин проведёт ребёнок на улице;
770 мин = 12 часов 50 мин;
ответ: на 11 день длительность прогулки достигнет 2 ч, 12 часов 50 мин ребёнок проведёт на воздухе.
1)39;-40
2)0;-54
3)0; 66
4)√29;-√29
5)нет корней
6) 9;-9
7)0
8)78
9)-46
10)1;-1
Отметьте как лучший ответ, если не сложно❤️