Для функции y(x)=x²-4x+3 найдите:
1 область определения функции;
2 множество значений функции;
3 наименьшее (наибольшее) значение функции;
4 уравнение оси симметрии параболы:
5 нули функции;
6 промежутки знакопостоянства функции;
7 промежутки монотонности функции
Объяснение:1. Область определения (-∞; +∞).
2. Область значений [-1; +∞).
3. Минимальное значение f(x) принимает в точке xmin = 2, f(2) = -1.
4. Ось симметрии x=2.
5. Нули функции x1=1, x2=3.
6. f(x)>0, при х∈(-∞;1)∪(3;+∞).
f(x)<0, при х∈(1;3).
7. f(x) убывает при х∈(-∞;2), f(x) возрастает при х∈(2;+∞).
Для функции y(x)=x²-4x+3 найдите:
1) область определения функции;
2)множество значений функции;
3)наименьшее (наибольшее) значение функции;
4)уравнение оси симметрии параболы:
5)нули функции;
6)промежутки знакопостоянства функции;
7)промежутки монотонности функции
Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически.
х² = 6 - х
х² + х - 6 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении.
Для построения прямой достаточно двух точек: х = 0, у = 6,
х = 3, у = -3+6 = 3