a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
Повар Миша может выполнить заказ на 136 минут быстрее, чем повар Коля.
Совместно они выполняют заказ за 51 минуту.
Пусть x минут - выполняет заказ повар Коля, тогда
x + 136 - выполняет заказ повар Миша
За 1 минуту совместной работы они выполнят 1/x + 1/(x+136) заказа.
Составим уравнение:
Решив данное уравнение ,получим x= - 102 и x= 68. По условию задачи x – величина положительная. Следовательно, повар Коля сможет выполнить работу за 68 минут, а повар Миша (68 + 136 = 204) за 204 минуты.
ответ: Коля выполнит заказ за 68 минут, Миша выполнит заказ за 204 минуты