Рассмотрим два крайних случая, чтобы доказать, что количество ребят не зависит от распределения 16 юношей по двум классам. 1) Пусть все 16 юношей в классе А, а в классе Б юношей нет. Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0. Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16. Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
(Q^2)/(2Q-1)
Объяснение:
Пусть q - знаменатель прогрессии
Q = 1/1-q
1-q = 1/Q
q = 1 - 1/Q
Если вместо всех членов прогрессии взять их квадраты, получится тоже бесконечно убывающая геометрическая прогрессия со знаменателем q^2
Тогда её сумма равна 1/(1-q^2) = 1/((1-q)(1+q)) = 1/((1/Q)(2-1/Q)) = Q^2/(2Q-1)