Если 2 стула дороже, чем один стол на 100 грн., то 4 стула дороже, чем два стола на 200 грн.
Пусть стол стоит х грн., тогда 3 стола стоят 3х грн., а 4 стула заменим двумя столами и 200 гривнами, тогда стоимость покупки из 3 столов и 4 стульев будет такой
3*х+(2*х+200)=4700
5х=4700-200
5х=4500
х=900, значит, один стол стоит 900 грн., тогда если к этой сумме добавить 100 грн. и разделить на два, получим цену стула, т.е. (900+100)/2=500
Значит, 500 грн. стоит стул.
традиционный.
цена стола х, цена стула у, отсюда система уравнений
2у-х=100
3х+4у=4700
Первое уравнение умножим на 3 и сложим со вторым. Получим
-3х+6у=300
3х+4у=4700
10у=5000, откуда у=5000/10
у=500, стул стоит 500 грн. , тогда стол стоит х=2у-100=2*500-100=900
Стол стоит 900 грн.
Объяснение:
-3x+y=2 а=3 в=2
у=3х+2 Коэффициент равен 3. Коэффициент а ,свободный член в
а) 3x-y=-2 3х+2=у а=3 в=2 совпадают
б) 3x+y=2 у=-3х+2 а= -3 в=2 пересекаются
в) y=3x а=3 в=0 параллельны
г) -3x+y=-2 у=3х-2 а=3 в=-2 параллельны
у=3х+2 у=-3х+2
3х+2= -3х+2
6х=0
х=0 у=3*0+2=2
у= 3х+2 у= -3х+2 эти прямые пересекаются в точке (0;2)